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A. Jumping Champa

Editorial

Let’s consider any valid journey visiting all the cities. If cities are numbered from 1 to N, any
such journey can be represented by a permutation of numbers from 1 to N. Let p be any such
permutation. Then p = [i1,142,...,%,] and its cost can be written as Q- (|h[iz] — hli1]]) + Q- (|h[i3] —
hliz]]) + ... + Q- (|k[in] = hlin-1]|)-

The first observation we can make here, is that we can rewrite it as @ - (|h[i2] — h[i1]| + |h[is] —
hliz]|+ ...+ |hlin] — hlin—1]), so in order to get the minimum cost, we just need to choose the best
permutation and we can ignore the @) multiplier for now - to get the final result, we will multiply
the cost of the best permutation by @ at the end.

How to find the best permutation of the cities?

Notice that the minimal cost, in terms of height differences, to visit all the cities cannot be smaller
than M —m, where M is the height of the highest city and m is the height of the lowest city. This
is true, because at some point, you have to visit the highest city, at a different point, you have to
visit the lowest city, and it is not possible to visit both of them at cost less than the difference of
their heights.

The second observation is that, if you sort the cities in a ascending order, you can achieve the exact
cost of M —m. This is true, because you are never traveling down, and the sum of costs to travel
any such ascending sequence, equals the height of the last city minus the height of the first city,
which equals in our case M — m.

To sum up, in order to solve a single test case, we just need to compute the minimum and the
maximum height which can be done of course in O(N) time.
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B. Sonya clears the array
Editorial

This problem has a very straightforward recursive approach, but first things first.

Let P[i, j] be the minimum cost of transforming A[i] and A[j] to consecutive primes. How to com-
pute the minimum cost of transforming two numbers a, b to two consecutive primes, where the cost
is the number of incrementations of both numbers? Well, since integers in the array are not very
big, you can use sieve to precompute prime numbers and then quickly find the first prime p not
greater than a and the first prime greater than p using lookup tables. From now, let’s assume that
we can compute P[i, j] quickly.

Let’s get back to the problem and define F[i][j] as the minimum cost of clearing the subarray Ali, j]
of A. If we have just two numbers in the array, the answer is obvious. What if there are N > 2
numbers? Well, we can try any element at position k > i as a pair for A[i], such that there are even
number of elements in A[i, j] between A[i] and A[k]. For a fixed k, the minimum cost of clearing
Ali, j], i.e. F[i][j], equals F[i + 1][k — 1] + F[k 4+ 1][j] + P[i][k], because this is the minimum cost
of clearing subarray A[i + 1][k — 1], the minimum cost of clearing subarray A[k + 1][j] and finally,
since after these clearings A[i] and A[k] are adjacent, the cost of transforming them into consecutive
primes. Now, iterating over all possible k, we can easily compute the answer.

One more thing, solving the problem by just using this recursive equation will easily lead to expo-
nential time complexity, because we will be solving the same subproblems many times. In order to
handle this, we can use dynamic programming or memoization to achieve polynomial solution.

Time complexity

Since there are O(N?) subarrays, and we solve a subproblem for a single one in O(N) time, assuming
that we have P[i, j] precomputed, the overall time complexity is O(N?).
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C. Sonya wants more equal numbers
Editorial

The first observation which we can make is that the maximum sum of elements in the array A is
at most 10°. Moreover, since N is not so large here, we can try the following approach.

Let’s define next[i][S] as the smallest ji, such that the suffix of subarray A[i..j] sums up to S. For
now, let’s assume that we can compute next[i][S], for each 1 <4 < N and for each 1 < S < 10°.
Can we solve the problem based on these values? Well, it is pretty straightforward, for each possible
sum 1 < § < 10°, we can use next table and act greedily to compute the number of non overlapping
subarrays of A, which sum up to S. For example, if next[1][S] = j, then we know that the leftmost
subarray which sums up to S ends in j, so we can take it into account and start searching the next
one at index j + 1, i.e. follow the value of next[j 4+ 1][S] and so on. So far so good, we showed that
if we have computed the next table, we can compute the result in O(10° - N) time.

How to compute the next table? We will show how to compute it for a fixed sum S. In order to fill
the whole next array, you need to run the below method for each possible S. First, we can compute
prefli] as the i*" prefix sum of A, i.e. pref[i] = A[l] + A[2] + ... + A[i]. Having this computed,
we are able to get the sum of any subarray of A in a constant time. Moreover, we can notice that
computing next[i][S] starting from ¢ = N is quite simple. Let’s assume, that for some i, we have
computed next[i][S] = j and j is well defined, i.e. suffix of A[7, j] sums up to S. Then, in order to
compute next[i — 1|[S], we can first initialize it to j, and begin search for a smaller value starting
from index j — 1. Since we can have precomputed pref table, we can fill up next table for a fixed
S in O(N) time.

To sum up, computing the whole next table takes O(10° - N) and computing the result based on
next table also takes O(10° - N) time.

Extra credit:

You can notice that the above solution depends strongly on size of elements of A, but we can easily
make this solution independent of these values. Just notice, that since there are O(N?) subarrays
of A, there are at most O(N?) different sums of these subarrays. Knowing that, rather than
iterating over all sums from 1 to maximum sum, we can iterate over only all possible sums. This
transform our solution to strongly polynomial algorithm of running time O(N?). You may ask why
we described a solution depending on values in A in the editorial? Well, it is easier to implement,
and since you can code something faster, it is always the best to do it during the competition.
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D. Sonya puts the blocks in the box

Editorial

We have N arrays of integers. The total number of elements in these arrays is at most 10°. The
goal is to pick at most one subarray from each of the arrays in such a way, that their total length
is not greater than M and the sum of their elements is maximum. Notice that M is at most 1000
here. Of course, input arrays can contains negative elements.

If you are familiar with knapsack problem, you are good to go with the problem. For each input
array, we can compute its best subarray for any size between 0 and M, where best subarray means
the subarray with the greatest sum. Knowing these values, we can use the standard dynamic pro-
gramming algorithm for the knapsack problem to solve the problem.

In more details, we process input arrays one by one. First, we compute the best subarrays of
processed array for all sizes from 0 to M. Then we update our dynamic programming table with
these values and we start processing next array.
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E. Sonya and the graph with disappearing edges

Editorial

You are given a graph G, with N nodes and M edges. Your task is to find the minimum time
needed to travel from node 1 to node IV, starting at time 0, knowing that traveling trough any edge
takes 1 unit of time. In addition, each edge e of K distincted edges, becomes unavailable from time
t[e], so you cannot use it at any time ¢ > t[e].

This problem can easily be solved using slightly modified BFS. You can think of a queue used in
BFS like of a set of active nodes, to which you can travel for sure, and you know the minimum time
to do it. Using these nodes and edges adjacent to them, you can try to extend the set of achievable
nodes. In order to simulate disappearing of edges, while considering each edge e at some time ¢, we
just need to check if ¢ < t[e], and if it is, we can use this edge, otherwise it is unavailable.

The crucial observation is that we perform the check in the earliest possible time, so if some edge
is unavailable at any time ¢, we know that there is no way to go through it earlier. This is true,
because BFS computes the shortest paths in unweighted graph.

Time complexity:

The total time complexity of this solution is O(N 4+ M), because we just need to add a check for
availability of an edge during a standard BFS execution
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F. Legendary Graph

Editorial

Let’s analyze what happens to type 2 queries when queries of type 1 are processed. If the new edge
connects two vertices already in the same connected component, effectively nothing will happen
and we can discard the edge. So in the end, the set of vertices that exist in our graph will form
a forest. This sounds quite similar to the disjoint-set data structure - query of type 1 will ask to
merge two trees and query of type 2 will ask to answer a question on all the vertices in the subtree
of the root.

Let’s modify our way of thinking of how to merge two trees. Normally, we just attach an edge
between the roots of the trees. However, we can also add a virtual node, and set that as the parent
of both the vertices we want to merge. Now the reason we say subtree of the root is clear - that
subtree will never change (gain new vertices) with future queries.

Suppose we process all queries of type 1 beforehand. Now for each query of type 2, we can switch
the query from ”Z’s component at some point in time” to ”"the subtree of vertex Z’ in the final
forest”, where Z’ is the root of the tree of Z at the point in which it was queried. Our problem
becomes much easier - we can use offline methods to solve the problem instead of being forced to
answer queries online.

Let’s perform a DFS through the tree and increment a time counter each time we enter a vertex.
We will remember the time when we entered this vertex and the time when we left this vertex.
If we assign each vertex to an index equal to the time when it was first visited, each subtree now
corresponds to a contiguous range of indices. So we have reduced our original problem from queries
on a dynamic graph to a simple array.

The next step is to further decompose the type 2 query from a contiguous range [left, right] to
[1,left — 1] and [1,7ight]. If we add the intervals of the vertices in order by their index, we can
answer all queries in the form [1,index] when we process the vertex with visit time ”index”.

To do so, we now have to support two operations:
e Add 1 to each element in a subarray.

e Get the sum of a subarray (we will treat the natural numbers as an array to get the intersec-
tions efficiently)

These operations can be done with a segment tree, but that will most likely receive Time Limit
Exceeded, due to the high constant. To optimize, we can use two binary indexed trees that support
range add and range sum. You can determine how to update these trees by carefully analyzing
what happens to a query when we add to a range. You can read more about this in Petr’s blog
(http://petr-mitrichev.blogspot.com/2013/05 /fenwick-tree-range-updates.html).
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G. Exchanging Letters

Editorial

In this problem, you have N + 2 people, numbered from 0 to N + 1, standing in a line. Each of
K people, chosen from people with numbers from 1 to N, have given a letter. Each person who
has a letter, has to pass it to his left or right neighbor. After this happens, let X be the sum of
numbers assigned to people who have letters, and if one person has two letters, we count his number
twice. You are interested how many ways of passing letters are there, such that X = T for a given T.

This problem requires some analysis. First, we can compute what the minimum possible X is. Since
people are numbered from left to right with increasing numbers, the smallest possible X is created
when each person, who initially has a letter, decides to pass the letter to his left neighbor. Let Tj
be this minimum value. If we want to increase our X, we have to pick some number of people, and
tell them to pass their letters to their right neighbors instead to left ones. Notice that, if we pick
M people and change their initial decisions, we will increase Ty by 2 - M, because we increase M
numbers in X by 2. Solet Y := T —1Tj, in other words we have to increase the minimum possible re-
sult Ty by Y to get the initial T. Based on the previous observation, there are (ijz) ways to do that.

To sum up, the only thing which remains it to compute the value of binomial coefficient modulo
10 + 7 fast, and we can do this using factorials and modular inverse.
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H. Xenny and Travel

Editorial

In this problem, you are given a graph G with N nodes and two distance matrices, A and B,
between them. A;; is the length of a road between nodes ¢ and j, while B; ; is the length of a
railway between them. Your task is to compute the length of the shortest path between two dis-
tincted nodes U and V, such that there exists another node Z, such that the path can be written
asU — ... = Z — ... — V and one of the following conditions is true:

e the path between U and Z consists of road only while the path between Z and V' consists of
railroads only

e the path between U and Z consists of railroads only while the path between Z and V' consists
of roads only.

How to solve this problem? If you are familiar with the single source shortest path problem, you
are good to go.

Let Cy (i) be the shortest path from U to ¢ using only roads .
Let Dy (i) be the shortest path from U to ¢ using only railroads.

Moreover,

Let Ev (i) be the shortest path from ¢ to V using only roads.
Let Fy (i) be the shortest path from i to V using only railroads.

Notice that if we can compute the above values, we can iterate through all nodes Z in the graphs
and compute the result as the minimum over all Z from min{Cy(Z) + Fv(Z), Dy(Z) + Ev(Z)}.

How to compute the distance functions? This is very straightforward, because in order to compute
Cy and Dy we can just run Dijkstra algorithm on the original graph, and in order to compute Ey
and Fy, we can reverse all edges in the graph and use Dijkstra to compute the shortest paths from
V' as a source vertex.

Time Complexity:

The overall complexity is dominated by running 4 times Dijkstra algorithm, which gives O(N? -
log N) time here.
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[. Big travel

Editorial

In this problem, we are dealing with manhattan distance, which is defined for two points, (z1,y1),
(x2,y2), as the sum of absolute difference between their coordinates, i.e. |(z1 — x2)| + |(y1 — y2)|.

Since we want to compute the sum of manhattan distances of all N points, the exact formula is
the following;: sz\; Z;V:Hl |(z; — x;)| + |(yi — y;)|. Notice that this formula can be decomposed
into two independent sums, one for the difference between = coordinates and the second between y
coordinates. If we know how to compute one of them, we can use the same method to compute the
other, so from now, we will stick to computing the Zfil Zj.VZH_I |(z; — x;)|. If we try to compute
its value straight from the equation, it will take O(NN?) time, which is too much to pass test cases.
We need a faster approach.

Let’s assume that we know all distances from a point x7 to all values of x’s smaller than xi. Let’s
consider other point, the first one not smaller than x¢, and call it ;. How to compute the distances
from x; to all smaller points? Well, we can use the corresponding distances from x;. Notice that
each distance from x; to some xy, where z, < x; equals the distance from z; to z; plus the distance
between z; and x;. If there are A points smaller than z; and S is the sum of distances from z; to
these smaller points, then the sum of distances from z; to smaller points equals S + (z; — ;) - A.
If we sort all points in non-decreasing order, we can easily compute the desired sum of distances
along one axis between each pair of cities in O(N) time, processing points from left to right and
using the above method. One more thing, notice that I used words smaller/greater points, but any
two points might have equal coordinates, but do not be concerned about that. After sorting points
in non-decreasing order, we say that a point x; is smaller than z; if and only if it appears earlier
in the sorted array.

Time complexity:

Since computing sum of distances in 1 dimension takes O (N -log V), because the time needed to sort
these values dominate other computations, and the fact that we have to compute two such sums,
one for z coordinates and the second for y coordinates, the total time complexity is O(N - log N).
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J. Game of sweets
Editorial

This problem can be rewritten as follows:

You have N non-negative integers, you randomly pick 2 of them, let’s say A and B. The outcome
of your choice is |B — A|. You are interested in how many different outcomes |B — A| you can get.

For example, if we have 3 integers: 4 8 6, we can get 2 picking for example 8 and 6, or we can get
4, if you pick 8 and 4. Notice than, if there are at least two equals integers in the input, you can
always get 0, this is very important while returning the final answer.

You may notice that one can try to solve this problem by trying all possible A and B, but this
method has a running time of O(NN?), which is too much for this problem. However, you may speed
up this solution using bitwise operations to run in O(N?/32), which, if implemented fast, should
pass all test cases. For more details, please refer to tester’s solution.

The intended solution, without bitwise tricks, is to represent the sequence and its slightly modified
copy as polynomials P(x) and Q(z) and use FFT to multiply these polynomials in order to get all
possible outcomes as a subset of coefficients of P(z) - Q(x).

However, first thing first, let’s reduce our problem from computing the difference between two ele-
ments to computing the sum of them.

Let’s consider the following example, as above, let’s assume that we have 3 integers: 4, 8 and 6.
Let S be the the original sequence [4,6,8] and W be the sequence [M — 4, M — 6, M — 8], for big
enough M, at least greater than the greatest integer in the input. Then, if we choose A from S
and B from W, and we are able to compute all possible values of A + B, we just need to subtract
M from these values in order to get the values of differences of elements picked only from original
sequence.

What is remaining now, is to show how to compute all possible sums of elements A, B such that
A is picked of one sequence of size N, and B is picked from the other one of the same size. Here
comes the FFT, if we represent both arrays as polynomials P(z) and Q(z), for example [4, 6, 8] can
be represented as P(z) = 2% + 25 + 2*, and Q(z) as 2™ — 4+ 2™ — 6 + 2™ — 8, and we multiply
these polynomials using FFT in O(N -log(NN)) time, we are done, because we can extract all possible
sums from coefficients of polynomial P(z) - Q(x).
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K. Parity Game

Editorial

This problem is in fact a graph related one, which is the first step to come up with the solution.
We have N boxes arranged in a line. Let’s create our graph G now. First, we have to define what
nodes are. We place a single node between each pair of boxes. In addition, we place one node before
the first box, and one after the last box. After that, G has N + 1 nodes. Next, for each query [¢, j]
asked by Marcus, we connect the node placed just before the i** box with the node placed just
after the j*" box. We say that these nodes bound a range [i, j].

After creating G, we can formulate the fact which is crucial to solve the problem.

The game is finished, i.e. Marcus can point out all boxes with candies without any mistake, if and
only if G is connected.

In fact, we can prove something stronger, we for a set of queries S = [(i1,j1), (i2,42), -, (ik, jr)]s
we know the parity of candies inside any range [i, j] whose bounding nodes are connected by edges
from S.

The intuition is that, if we have two ranges, A, B, sharing one node, and we know the parity of
candies in boxes in A and B, we can deduct the parity of candies in boxes in a range A|J B, A/B,
and B/A. In order to prove the above fact, you can extend this intuition to a full proof by induction.

With the required knowledge, we can notice that, in order to make the game not finished, we have
to disconnect the graph and we want to do it removing the smaller number of edges. This is a very
classical and well studied problem in computer science. The edge connectivity of graph G is the
largest number k, for which removing k edges from G do not disconnect it. In order to solve our
problem, we want to compute the edge connectivity of G, or in the other words, compute the size
of the smaller set of edges C, such that removing C' from G disconnects it.

There are many solutions to this problem, and you can use any of them:

e Reduce the problem to finding max-flow/min-cut in a graph with unit cost edges from node
s to node t, by picking arbitrary node as s and try any other from remaining nodes as ¢ to
minimize the size of the cut. This requires O(N - F(G)), where F(G) is the time complexity of
used max-flow/min-cut algorithm. You can use either Dinic’s algorithm, Ford-Fulkerson
algorithm, push-relabel method, or any other to solve it.

e Use deterministic algorithm to find min-cut directly. Possibly the algorithm by Stoer and
Wagner is the simplest to implement and very fast.

e Use randomized algorithm by David Karger to find min-cut directly with some probability,
and then increase this probability by repeating the algorithm.



